- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Liu, Lujia (2)
-
Allen, Taylor_G (1)
-
Barlow, Stephen (1)
-
Brédas, Jean‐Luc (1)
-
Castano, Ioannina (1)
-
Collins, Kelsey_A (1)
-
Dichtel, William_R (1)
-
Ekiel-Jeżewska, Maria_L (1)
-
Evans, Austin_M (1)
-
Freedman, Danna_E (1)
-
Gianneschi, Nathan_C (1)
-
Jhulki, Samik (1)
-
Kahn, Antoine (1)
-
Li, Hong (1)
-
Marder, Seth_R (1)
-
Nunes, Janine_K (1)
-
Oanta, Alexander_K (1)
-
Puggioni, Danilo (1)
-
Rajh, Tijana (1)
-
Reid, Obadiah_G (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The long-time behavior of highly elastic fibers in a shear flow is investigated experimentally and numerically. Characteristic attractors of the dynamics are found. It is shown that for a small ratio of bending to hydrodynamic forces, most fibers form a spinning elongated double helix, performing an effective Jeffery orbit very close to the vorticity direction. Recognition of these oriented shapes, and how they form in time, may prove useful in the future for understanding the time history of complex microstructures in fluid flows and considering processing steps for their synthesis.more » « less
-
Evans, Austin_M; Collins, Kelsey_A; Xun, Sangni; Allen, Taylor_G; Jhulki, Samik; Castano, Ioannina; Smith, Hannah_L; Strauss, Michael_J; Oanta, Alexander_K; Liu, Lujia; et al (, Advanced Materials)Abstract 2D polymers (2DPs) are promising as structurally well‐defined, permanently porous, organic semiconductors. However, 2DPs are nearly always isolated as closed shell organic species with limited charge carriers, which leads to low bulk conductivities. Here, the bulk conductivity of two naphthalene diimide (NDI)‐containing 2DP semiconductors is enhanced by controllably n‐doping the NDI units using cobaltocene (CoCp2). Optical and transient microwave spectroscopy reveal that both as‐prepared NDI‐containing 2DPs are semiconducting with sub‐2 eV optical bandgaps and photoexcited charge‐carrier lifetimes of tens of nanoseconds. Following reduction with CoCp2, both 2DPs largely retain their periodic structures and exhibit optical and electron‐spin resonance spectroscopic features consistent with the presence of NDI‐radical anions. While the native NDI‐based 2DPs are electronically insulating, maximum bulk conductivities of >10−4 S cm−1are achieved by substoichiometric levels of n‐doping. Density functional theory calculations show that the strongest electronic couplings in these 2DPs exist in the out‐of‐plane (π‐stacking) crystallographic directions, which indicates that cross‐plane electronic transport through NDI stacks is primarily responsible for the observed electronic conductivity. Taken together, the controlled molecular doping is a useful approach to access structurally well‐defined, paramagnetic, 2DP n‐type semiconductors with measurable bulk electronic conductivities of interest for electronic or spintronic devices.more » « less
An official website of the United States government
